How does weather affect drones

Weather impacts nearly all aspects of drone operations, affecting both the operation of the drone itself and remote pilot performance.

Before commencing a flight, in addition to knowing the operating manual of the equipment, the remote pilot must be aware of all the information necessary for flight planning.

One of the necessary information for the flight is the careful evaluation of the weather conditions.

Weather conditions are ideal for safe drone operation. Sunny days with calm or weak wind offer less risk to the safety of the operations of this type of equipment.

However, it may be necessary to operate a UAS in weather conditions that do not always fit the ideal operating profile. In this situation, care must be taken not to compromise the safety of the operation and to avoid damaging the equipment and, in particular, the risk of collision with objects, persons, and aircraft.

The remote pilot must know the operational limits of the drone as regards the weather conditions. Wind speed above 20 kt, snow, rain, and fog are adverse weather conditions for the operation of some drone models, such as Phantom 4 and Mavic.

How weather affects UAS operations

As we know that weather can have a massive impact on flights – whether it’s an airplane, a helicopter, or a drone. But different inclement weather can impact drones in different ways than you might expect, including:

  • High winds: High winds can blow drones off course, making it impossible to control during takeoff, in-flight or landing, causing a crash.
  • Water damage: Precipitation can get inside a drone and ruin electrical components, making the drone inoperable and causing it to crash. As such, most drones are limited in wet weather.
  • Cold temperatures: Colder temperatures can reduce battery life drastically, impacting drone range and flying times.
  • Low visibility: Flying in foggy or cloudy conditions with low visibility can reduce a drone cameras ability to gather visual data, wasting time and money on unsuccessful flights
  • Lightning: When lightning strikes your drone, or somewhere near the drone, there’s a decent chance that it would cause substantial damage to the drone and its functions.

Sources of weather data

The AWC, a Meteorological Watch Office (MWO) for the International Civil Aviation Organization (ICAO), is located in Kansas City, Missouri.

Aviation weather reports are designed to give accurate depictions of current weather conditions. Each report provides current information that is updated at different times. Some typical reports are METARs and PIREPs.

To view a weather report, go to https://www.aviationweather.gov/.

A METAR is an observation of current surface weather reported in a standard international format.

Effects of Weather on Unmanned Aircraft Performance

There are factors that affect aircraft performance, which include the aircraft weight, atmospheric conditions, runway environment, and the fundamental physical laws governing the forces acting on an aircraft.

Since the characteristics of the atmosphere have a major effect on performance, it is necessary to review two dominant factors – pressure and temperature.

Density Altitude

The more appropriate term for correlating aerodynamic performance in the nonstandard atmosphere is density altitude – the altitude in the standard atmosphere corresponding to a particular value of air density.

As the density of the air increases (lower density altitude), aircraft performance increases. Conversely, as air density decreases (higher density altitude), aircraft performance decreases. A decrease in air density means a high-density altitude; an increase in air density means a lower density altitude. Density altitude has a direct effect on aircraft performance.

Air density is affected by changes in altitude, temperature, and humidity. High-density altitude refers to thin air while low-density altitude refers to dense air.

The conditions that result in a high-density altitude are high elevations, low atmospheric pressures, high temperatures, high humidity, or some combination of these factors. Lower elevations, high atmospheric pressure, low temperatures, and low humidity are more indicative of low-density altitude.

Effects of Pressure on Density

Since air is a gas, it can be compressed or expanded. When air is compressed, a greater amount of air can occupy a given volume. Conversely, when pressure on a given volume of air is decreased, the air expands and occupies a greater space. That is, the original column of air at a lower pressure contains a smaller mass of air. In other words, the density is decreased. In fact, density is directly proportional to pressure. If the pressure is doubled, the density is doubled, and if the pressure is lowered, so is the density. This statement is true only at a constant temperature.

Effects of Temperature on Density

Increasing the temperature of a substance decreases its density. Conversely, decreasing the temperature increases the density. Thus, the density of air varies inversely with temperature. This statement is true only at constant pressure.

In the atmosphere, both temperature and pressure decrease with altitude and have conflicting effects upon density. However, the fairly rapid drop in pressure as altitude is increased usually has the dominant effect. Hence, pilots can expect the density to decrease with altitude.

Effects of Humidity (Moisture) on Density

The preceding paragraphs are based on the presupposition of perfectly dry air. In reality, it is never completely dry. The small amount of water vapor suspended in the atmosphere may be negligible under certain conditions, but in other conditions, humidity may become an important factor in the performance of an aircraft.

Water vapor is lighter than air; consequently, moist air is lighter than dry air. Therefore, as the water content of the air increases, the air becomes less dense, increasing density altitude and decreasing performance. It is the lightest or least dense when, in a given set of conditions, it contains the maximum amount of water vapor.

Humidity, also called relative humidity, refers to the amount of water vapor contained in the atmosphere and is expressed as a percentage of the maximum amount of water vapor the air can hold. This amount varies with the temperature; warm air can hold more water vapor, while colder air can hold less. The perfectly dry air that contains no water vapor has a relative humidity of zero percent, while saturated air that cannot hold any more water vapor has a relative humidity of 100 percent. Humidity alone is usually not considered an essential factor in calculating density altitude and aircraft performance; however, it does contribute.

Effect of Obstructions on Wind

Another atmospheric hazard exists that can create problems for pilots. Obstructions on the ground affect the flow of wind and can be an unseen danger. Ground topography and large buildings can break up the flow of the wind and create wind gusts that change rapidly in direction and speed. These obstructions range from man-made structures, like hangars, to large natural obstructions, such as mountains, bluffs, or canyons.

The intensity of the turbulence associated with ground obstructions depends on the size of the obstacle and the primary velocity of the wind. This can affect the performance of any aircraft and can present a very serious hazard.

This same condition is even more noticeable when flying in mountainous regions. While the wind flows smoothly up the windward side of the mountain and the upward currents help to carry an aircraft over the peak of the mountain, the wind on the leeward side does not act in a similar manner. As the air flows down the leeward side of the mountain, the air follows the contour of the terrain and is increasingly turbulent. This tends to push an aircraft into the side of a mountain. The stronger the wind, the greater the downward pressure and turbulence become.

Wind Shear

Wind shear is a sudden, drastic change in wind speed and/or direction over a very small area. Wind shear can subject an aircraft to violent updrafts and downdrafts, as well as abrupt changes to the horizontal movement of the aircraft.

Wind shear is dangerous to an aircraft. It can rapidly change the performance of the aircraft and disrupt the normal flight attitude. For example, a tailwind quickly changing to a headwind causes an increase in airspeed and performance. Conversely, a headwind changing to a tailwind causes a decrease in airspeed and performance. In either case, a pilot must be prepared to react immediately to these changes to maintain control of the aircraft.

Low-level wind shear

While wind shear can occur at any altitude, low-level wind shear is especially hazardous due to the proximity of an aircraft to the ground. Low-level wind shear is commonly associated with passing frontal systems, thunderstorms, temperature inversions, and strong upper-level winds (greater than 25 knots).

Microburst

The most severe type of low-level wind shear, a microburst, is associated with convective precipitation into dry air at cloud base. Microburst activity may be indicated by an intense rain shaft at the surface but virga at cloud base and a ring of blowing dust is often the only visible clue. A typical microburst has a horizontal diameter of 1-2 miles and a nominal depth of 1,000 feet. The lifespan of a microburst is about 5-15 minutes during which time it can produce downdrafts of up to 6,000 feet per minute (fpm) and headwind losses of 30-90 knots, seriously degrading performance. It can also produce strong turbulence and hazardous wind direction changes. During an inadvertent microburst encounter, the small UA may first experience a performance-increasing headwind, followed by performance-decreasing downdrafts, followed by a rapidly increasing tailwind. This can result in terrain impact or flight dangerously close to the ground. An encounter during approach involves the same sequence of wind changes and could force the small UA to the ground short of the intended landing area.

It is important to remember that wind shear can affect any flight at any altitude. While wind shear may be reported, it often remains undetected and is a silent danger to aviation. Always be alert to the possibility of wind shear, especially when flying in and around thunderstorms and frontal systems.

Atmospheric Stability

The stability of the atmosphere depends on its ability to resist vertical motion. A stable atmosphere makes vertical movement difficult, and small vertical disturbances dampen out and disappear. In an unstable atmosphere, small vertical air movements tend to become larger, resulting in turbulent airflow and convective activity. Instability can lead to significant turbulence, extensive vertical clouds, and severe weather.

The combination of moisture and temperature determines the stability of the air and the resulting weather. Cool, dry air is very stable and resists vertical movement, which leads to good and generally clear weather. The greatest instability occurs when the air is moist and warm, as it is in the tropical regions in the summer. Typically, thunderstorms appear on a daily basis in these regions due to the instability of the surrounding air.

Inversion

As air rises and expands in the atmosphere, the temperature decreases. There is an atmospheric anomaly that can occur; however, that changes this typical pattern of atmospheric behavior. When the temperature of the air rises with altitude, a temperature inversion exists. Inversion layers are commonly shallow layers of smooth, stable air close to the ground. The temperature of the air increases with altitude to a certain point, which is the top of the inversion. The air at the top of the layer acts as a lid, keeping weather and pollutants trapped below. If the relative humidity of the air is high, it can contribute to the formation of clouds, fog, haze, or smoke resulting in diminished visibility in the inversion layer.

Surface-based temperature inversions occur on clear, cool nights when the air close to the ground is cooled by the lowering temperature of the ground. The air within a few hundred feet of the surface becomes cooler than the air above it. Frontal inversions occur when warm air spreads over a layer of cooler air, or cooler air is forced under a layer of warmer air.

Temperature/Dew Point Relationship

The relationship between dewpoint and temperature defines the concept of relative humidity. The dew point, given in degrees, is the temperature at which the air can hold no more moisture. When the temperature of the air is reduced to the dew point, the air is completely saturated and moisture begins to condense out of the air in the form of fog, dew, frost, clouds, rain, or snow.

Methods by Which Air Reaches the Saturation Point

If air reaches the saturation point while temperature and dew point are close together, it is highly likely that fog, low clouds, and precipitation will form. There are four methods by which air can reach the saturation point.

  1. First, when warm air moves over a cold surface, the air temperature drops and reaches the saturation point.
  2. Second, the saturation point may be reached when cold air and warm air mix.
  3. Third, when the air cools at night through contact with the cooler ground, air reaches its saturation point.
  4. The fourth method occurs when air is lifted or is forced upward in the atmosphere.

Dew and Frost

On cool, clear, calm nights, the temperature of the ground and objects on the surface can cause temperatures of the surrounding air to drop below the dew point. When this occurs, the moisture in the air condenses and deposits itself on the ground, buildings, and other objects like cars and aircraft. This moisture is known as dew and sometimes can be seen on grass and other objects in the morning. If the temperature is below freezing, the moisture is deposited in the form of frost. While dew poses no threat to a small UA, frost poses a definite flight safety hazard. Frost disrupts the flow of air over the wing and can drastically reduce the production of lift. It also increases drag, which when combined with lowered lift production, can adversely affect the ability to take off. A small UA must be thoroughly cleaned and free of frost prior to beginning a flight.

Clouds

To pilots, the cumulonimbus cloud is perhaps the most dangerous cloud type. It appears individually or in groups and is known as either an air mass or orographic thunderstorm. The heating of the air near the Earth’s surface creates an air mass thunderstorm; the upslope motion of air in the mountainous regions causes orographic thunderstorms. Cumulonimbus clouds that form in a continuous line are non-frontal bands of thunderstorms or squall lines.

Since rising air currents cause cumulonimbus clouds, they are extremely turbulent and pose a significant hazard to flight safety. For example, if a small UA enters a thunderstorm, the small UA could experience updrafts and downdrafts that exceed 3,000 fpm. In addition, thunderstorms can produce large hailstones, damaging lightning, tornadoes, and large quantities of water, all of which are potentially hazardous to an aircraft.

Standing Lenticular Altocumulus Clouds

Standing lenticular altocumulus clouds are formed on the crests of waves created by barriers in the wind flow. The clouds show little movement, hence the name standing. Wind, however, can be quite strong blowing through such clouds. They are characterized by their smooth, polished edges. The presence of these clouds is a good indication of very strong turbulence and should be avoided.

Visibility

Closely related to cloud cover and reported ceilings is visibility information. Visibility refers to the greatest horizontal distance at which prominent objects can be viewed with the naked eye. Current visibility is also reported in METAR and other aviation weather reports, as well as by automated weather systems. Visibility information, as predicted by meteorologists, is available for a pilot during a preflight weather briefing.

Weather considerations for drones

The best weather to fly a drone is when it is sunny, a reasonable temperature (25°C, for example), and little to no wind. Sunny days are more beautiful, 25°C is simply the perfect temperature.

Many drone manufacturers specify safe operating limits or warnings according to weather parameters in their manuals.

For example – DJI Mavic Air 2 User Manual says –
“Do not use the aircraft in severe weather conditions including wind speeds exceeding 10 m/s, snow, rain, and fog.”

Also, regulations in some jurisdictions specify that drone operations cannot proceed unless weather conditions at the time of flight permit operation in accordance with the manufacturer’s instructions.